需求:
处理以下流量数据,第1列是手机号,第7列是上行流量,第8列是下行流量。将手机号一样的用户进行合并,上行流量汇总,下行流量也汇总,并相加求得总流量。
1363157985066 13726230503 00-FD-07-A4-72-B8:CMCC 120.196.100.82 i02.c.aliimg.com 24 27 2481 24681 200
1363157995052 13826544101 5C-0E-8B-C7-F1-E0:CMCC 120.197.40.4 4 0 264 0 2001363157991076 13926435656 20-10-7A-28-CC-0A:CMCC 120.196.100.99 2 4 132 1512 2001363154400022 13926251106 5C-0E-8B-8B-B1-50:CMCC 120.197.40.4 4 0 240 0 2001363157993044 18211575961 94-71-AC-CD-E6-18:CMCC-EASY 120.196.100.99 iface.qiyi.com 视频网站 15 12 1527 2106 2001363157995074 84138413 5C-0E-8B-8C-E8-20:7DaysInn 120.197.40.4 122.72.52.12 20 16 4116 1432 2001363157993055 13560439658 C4-17-FE-BA-DE-D9:CMCC 120.196.100.99 18 15 1116 954 2001363157995033 15920133257 5C-0E-8B-C7-BA-20:CMCC 120.197.40.4 sug.so.360.cn 信息安全 20 20 3156 2936 2001363157983019 13719199419 68-A1-B7-03-07-B1:CMCC-EASY 120.196.100.82 4 0 240 0 2001363157984041 13660577991 5C-0E-8B-92-5C-20:CMCC-EASY 120.197.40.4 s19.cnzz.com 站点统计 24 9 6960 690 2001363157973098 15013685858 5C-0E-8B-C7-F7-90:CMCC 120.197.40.4 rank.ie.sogou.com 搜索引擎 28 27 3659 3538 2001363157986029 15989002119 E8-99-C4-4E-93-E0:CMCC-EASY 120.196.100.99 www.umeng.com 站点统计 3 3 1938 180 2001363157992093 13560439658 C4-17-FE-BA-DE-D9:CMCC 120.196.100.99 15 9 918 4938 2001363157986041 13480253104 5C-0E-8B-C7-FC-80:CMCC-EASY 120.197.40.4 3 3 180 180 2001363157984040 13602846565 5C-0E-8B-8B-B6-00:CMCC 120.197.40.4 2052.flash2-http.qq.com 综合门户 15 12 1938 2910 2001363157995093 13922314466 00-FD-07-A2-EC-BA:CMCC 120.196.100.82 img.qfc.cn 12 12 3008 3720 2001363157982040 13502468823 5C-0A-5B-6A-0B-D4:CMCC-EASY 120.196.100.99 y0.ifengimg.com 综合门户 57 102 7335 110349 2001363157986072 18320173382 84-25-DB-4F-10-1A:CMCC-EASY 120.196.100.99 input.shouji.sogou.com 搜索引擎 21 18 9531 2412 2001363157990043 13925057413 00-1F-64-E1-E6-9A:CMCC 120.196.100.55 t3.baidu.com 搜索引擎 69 63 11058 48243 2001363157988072 13760778710 00-FD-07-A4-7B-08:CMCC 120.196.100.82 2 2 120 120 2001363157985079 13823070001 20-7C-8F-70-68-1F:CMCC 120.196.100.99 6 3 360 180 2001363157985069 13600217502 00-1F-64-E2-E8-B1:CMCC 120.196.100.55 18 138 1080 186852 200
思考:
和之前mapreduce讲解的那个统计单词的例子类似。在这里我们主要解决的是怎么处理map和reduce的输入输出。
首先看map,其输入的key是LongWritable,value是Text,绝对固定。为什么呢?我们之前说过,默认情况下,框架传递给我们的mapper的输入数据中,key是要处理的文本中一行的起始偏移量,这一行的内容作为value。
输出的key我们可以用手机号表示,那么就是Text,输出value我们既想表示出上行流量,又想表示下行流量,发现没有这种数据类型,所以就需要自定义一个类,进行传递。自定义类,就一定需要序列化,才可以传递哦。
然后看reduce,其输入key就是map的输出key,其输入value就是map的输出value。
输出key我们也可以用手机号表示,就是Text,输出value我们也用一个类进行表示。
下面我们编写该程序:
导入必要的包后,建立文件格式如下:
FlowBean.java:
package cn.darrenchan.hadoop.mr.flow;import java.io.DataInput;import java.io.DataOutput;import java.io.IOException;import org.apache.hadoop.io.Writable;public class FlowBean implements Writable { private String phoneNum;// 手机号 private long upFlow;// 上行流量 private long downFlow;// 下行流量 private long sumFlow;// 总流量 public FlowBean() { super(); } public FlowBean(String phoneNum, long upFlow, long downFlow) { super(); this.phoneNum = phoneNum; this.upFlow = upFlow; this.downFlow = downFlow; this.sumFlow = upFlow + downFlow; } public String getPhoneNum() { return phoneNum; } public void setPhoneNum(String phoneNum) { this.phoneNum = phoneNum; } public long getUpFlow() { return upFlow; } public void setUpFlow(long upFlow) { this.upFlow = upFlow; } public long getDownFlow() { return downFlow; } public void setDownFlow(long downFlow) { this.downFlow = downFlow; } public long getSumFlow() { return sumFlow; } public void setSumFlow(long sumFlow) { this.sumFlow = sumFlow; } @Override public String toString() { return upFlow + "\t" + downFlow + "\t" + sumFlow; } // 从数据流中反序列出对象的数据 // 从数据流中读出对象字段时,必须跟序列化时的顺序保持一致 @Override public void readFields(DataInput in) throws IOException { phoneNum = in.readUTF(); upFlow = in.readLong(); downFlow = in.readLong(); sumFlow = in.readLong(); } // 将对象数据序列化到流中 @Override public void write(DataOutput out) throws IOException { out.writeUTF(phoneNum); out.writeLong(upFlow); out.writeLong(downFlow); out.writeLong(sumFlow); }}
FlowMapper.java:
package cn.darrenchan.hadoop.mr.flow;import java.io.IOException;import org.apache.commons.lang.StringUtils;import org.apache.hadoop.io.LongWritable;import org.apache.hadoop.io.Text;import org.apache.hadoop.mapreduce.Mapper;public class FlowMapper extends Mapper{ @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { // 将这一行的内容转换成string类型 String line = value.toString(); // 对这一行的文本按特定分隔符切分 String[] words = StringUtils.split(line, "\t"); //拿到我们需要的字段 String phoneNum = words[0]; long upFlow = Long.parseLong(words[7]); long downFlow = Long.parseLong(words[8]); //封装数据为kv并输出 context.write(new Text(phoneNum), new FlowBean(phoneNum, upFlow, downFlow)); }}
FlowReducer.java:
package cn.darrenchan.hadoop.mr.flow;import java.io.IOException;import org.apache.hadoop.io.Text;import org.apache.hadoop.mapreduce.Reducer;public class FlowReducer extends Reducer{ // 框架每传递一组数据<1387788654,{flowbean,flowbean,flowbean,flowbean.....}>调用一次我们的reduce方法 // reduce中的业务逻辑就是遍历values,然后进行累加求和再输出 @Override protected void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException { long upFlowCounter = 0; long downFlowCounter = 0; for (FlowBean flowBean : values) { upFlowCounter += flowBean.getUpFlow(); downFlowCounter += flowBean.getDownFlow(); } context.write(key, new FlowBean(key.toString(), upFlowCounter, downFlowCounter)); }}
FlowRunner.java:
package cn.darrenchan.hadoop.mr.flow;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.conf.Configured;import org.apache.hadoop.fs.Path;import org.apache.hadoop.io.Text;import org.apache.hadoop.mapreduce.Job;import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import org.apache.hadoop.util.Tool;import org.apache.hadoop.util.ToolRunner;//这是job描述和提交类的规范写法//执行命令: hadoop jar flow.jar cn.darrenchan.hadoop.mr.flow.FlowRunner /flow/srcdata /flow/outputpublic class FlowRunner extends Configured implements Tool { @Override public int run(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf); // 设置整个job所用的那些类在哪个jar包 job.setJarByClass(FlowRunner.class); // 本job使用的mapper和reducer的类 job.setMapperClass(FlowMapper.class); job.setReducerClass(FlowReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(FlowBean.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(FlowBean.class); // 指定要处理的输入数据存放路径 FileInputFormat.setInputPaths(job, new Path(args[0])); // 指定处理结果的输出数据存放路径 FileOutputFormat.setOutputPath(job, new Path(args[1])); // 将job提交给集群运行 ,将运行状态进行打印 return job.waitForCompletion(true) ? 0 : 1; } public static void main(String[] args) throws Exception { int res = ToolRunner.run(new Configuration(), new FlowRunner(), args); System.exit(res); }}
将要处理的文件上传到hdfs上一个目录,我的是/flow/srcdata。将程序打成jar包flow.jar,然后执行命令:
hadoop jar flow.jar cn.darrenchan.hadoop.mr.flow.FlowRunner /flow/srcdata /flow/output。
我们会得到如下运行效果:
17/02/26 04:35:23 INFO client.RMProxy: Connecting to ResourceManager at weekend110/192.168.230.134:8032
17/02/26 04:35:23 WARN mapreduce.JobSubmitter: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.17/02/26 04:35:24 INFO input.FileInputFormat: Total input paths to process : 117/02/26 04:35:24 INFO mapreduce.JobSubmitter: number of splits:117/02/26 04:35:24 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1488112052214_000117/02/26 04:35:25 INFO impl.YarnClientImpl: Submitted application application_1488112052214_000117/02/26 04:35:25 INFO mapreduce.Job: The url to track the job: http://weekend110:8088/proxy/application_1488112052214_0001/17/02/26 04:35:25 INFO mapreduce.Job: Running job: job_1488112052214_000117/02/26 04:35:34 INFO mapreduce.Job: Job job_1488112052214_0001 running in uber mode : false17/02/26 04:35:34 INFO mapreduce.Job: map 0% reduce 0%17/02/26 04:35:39 INFO mapreduce.Job: map 100% reduce 0%17/02/26 04:35:44 INFO mapreduce.Job: map 100% reduce 100%17/02/26 04:35:44 INFO mapreduce.Job: Job job_1488112052214_0001 completed successfully17/02/26 04:35:44 INFO mapreduce.Job: Counters: 49 File System Counters FILE: Number of bytes read=1266 FILE: Number of bytes written=188391 FILE: Number of read operations=0 FILE: Number of large read operations=0 FILE: Number of write operations=0 HDFS: Number of bytes read=2338 HDFS: Number of bytes written=623 HDFS: Number of read operations=6 HDFS: Number of large read operations=0 HDFS: Number of write operations=2 Job Counters Launched map tasks=1 Launched reduce tasks=1 Data-local map tasks=1 Total time spent by all maps in occupied slots (ms)=3661 Total time spent by all reduces in occupied slots (ms)=2568 Total time spent by all map tasks (ms)=3661 Total time spent by all reduce tasks (ms)=2568 Total vcore-seconds taken by all map tasks=3661 Total vcore-seconds taken by all reduce tasks=2568 Total megabyte-seconds taken by all map tasks=3748864 Total megabyte-seconds taken by all reduce tasks=2629632 Map-Reduce Framework Map input records=22 Map output records=22 Map output bytes=1216 Map output materialized bytes=1266 Input split bytes=124 Combine input records=0 Combine output records=0 Reduce input groups=22 Reduce shuffle bytes=1266 Reduce input records=22 Reduce output records=22 Spilled Records=44 Shuffled Maps =1 Failed Shuffles=0 Merged Map outputs=1 GC time elapsed (ms)=147 CPU time spent (ms)=1400 Physical memory (bytes) snapshot=218402816 Virtual memory (bytes) snapshot=726446080 Total committed heap usage (bytes)=137433088 Shuffle Errors BAD_ID=0 CONNECTION=0 IO_ERROR=0 WRONG_LENGTH=0 WRONG_MAP=0 WRONG_REDUCE=0 File Input Format Counters Bytes Read=2214 File Output Format Counters Bytes Written=623
最终的结果如下所示:
1363154400022 0 200 200
1363157973098 27 3659 36861363157982040 102 7335 74371363157983019 0 200 2001363157984040 12 1938 19501363157984041 9 6960 69691363157985069 186852 200 1870521363157985079 180 200 3801363157986029 3 1938 19411363157986041 180 200 3801363157986072 18 9531 95491363157988072 120 200 3201363157990043 63 11058 111211363157991076 1512 200 17121363157992093 4938 200 51381363157993044 12 1527 15391363157993055 954 200 11541363157995033 20 3156 31761363157995052 0 200 2001363157995074 4116 1432 55481363157995093 3008 3720 67281363157985066 2481 24681 27162